'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { f(X) -> if(X, c(), n__f(n__true())) , if(true(), X, Y) -> X , if(false(), X, Y) -> activate(Y) , f(X) -> n__f(X) , true() -> n__true() , activate(n__f(X)) -> f(activate(X)) , activate(n__true()) -> true() , activate(X) -> X} Details: We have computed the following set of weak (innermost) dependency pairs: { f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , if^#(true(), X, Y) -> c_1() , if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_3() , true^#() -> c_4() , activate^#(n__f(X)) -> c_5(f^#(activate(X))) , activate^#(n__true()) -> c_6(true^#()) , activate^#(X) -> c_7()} The usable rules are: { activate(n__f(X)) -> f(activate(X)) , activate(n__true()) -> true() , activate(X) -> X , f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , true() -> n__true() , if(true(), X, Y) -> X , if(false(), X, Y) -> activate(Y)} The estimated dependency graph contains the following edges: {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))} ==> {if^#(false(), X, Y) -> c_2(activate^#(Y))} {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))} ==> {if^#(true(), X, Y) -> c_1()} {if^#(false(), X, Y) -> c_2(activate^#(Y))} ==> {activate^#(n__true()) -> c_6(true^#())} {if^#(false(), X, Y) -> c_2(activate^#(Y))} ==> {activate^#(n__f(X)) -> c_5(f^#(activate(X)))} {if^#(false(), X, Y) -> c_2(activate^#(Y))} ==> {activate^#(X) -> c_7()} {activate^#(n__f(X)) -> c_5(f^#(activate(X)))} ==> {f^#(X) -> c_3()} {activate^#(n__f(X)) -> c_5(f^#(activate(X)))} ==> {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))} {activate^#(n__true()) -> c_6(true^#())} ==> {true^#() -> c_4()} We consider the following path(s): 1) { f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , activate^#(n__f(X)) -> c_5(f^#(activate(X))) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , activate^#(n__true()) -> c_6(true^#()) , true^#() -> c_4()} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__true()) -> true() , activate(X) -> X , f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , true() -> n__true() , if(true(), X, Y) -> X , if(false(), X, Y) -> activate(Y)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__true()) -> true() , activate(X) -> X , f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , true() -> n__true() , if(true(), X, Y) -> X , if(false(), X, Y) -> activate(Y) , activate^#(n__true()) -> c_6(true^#()) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , activate^#(n__f(X)) -> c_5(f^#(activate(X))) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , true^#() -> c_4()} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [1] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {true() -> n__true()} and weakly orienting the rules { activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {true() -> n__true()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [1] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [1] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))} and weakly orienting the rules { true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [1] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [1] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {if^#(false(), X, Y) -> c_2(activate^#(Y))} and weakly orienting the rules { f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if^#(false(), X, Y) -> c_2(activate^#(Y))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [8] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [1] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__true()) -> c_6(true^#())} and weakly orienting the rules { if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__true()) -> c_6(true^#())} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [15] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {true^#() -> c_4()} and weakly orienting the rules { activate^#(n__true()) -> c_6(true^#()) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {true^#() -> c_4()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [7] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [1] c_4() = [0] c_5(x1) = [1] x1 + [8] c_6(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {if(false(), X, Y) -> activate(Y)} and weakly orienting the rules { true^#() -> c_4() , activate^#(n__true()) -> c_6(true^#()) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if(false(), X, Y) -> activate(Y)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [15] c_6(x1) = [1] x1 + [1] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X)} and weakly orienting the rules { if(false(), X, Y) -> activate(Y) , true^#() -> c_4() , activate^#(n__true()) -> c_6(true^#()) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [8] activate(x1) = [1] x1 + [8] f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [8] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_5(f^#(activate(X)))} and weakly orienting the rules { f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , if(false(), X, Y) -> activate(Y) , true^#() -> c_4() , activate^#(n__true()) -> c_6(true^#()) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_5(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [8] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [8] c_3() = [0] true^#() = [8] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { activate^#(n__f(X)) -> c_5(f^#(activate(X))) , f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , if(false(), X, Y) -> activate(Y) , true^#() -> c_4() , activate^#(n__true()) -> c_6(true^#()) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { activate^#(n__f(X)) -> c_5(f^#(activate(X))) , f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , if(false(), X, Y) -> activate(Y) , true^#() -> c_4() , activate^#(n__true()) -> c_6(true^#()) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { f_1(6) -> 4 , f_1(6) -> 6 , f_2(15) -> 4 , f_2(15) -> 6 , if_1(6, 8, 9) -> 4 , if_1(6, 8, 9) -> 6 , if_2(6, 17, 18) -> 4 , if_2(6, 17, 18) -> 6 , if_2(15, 17, 18) -> 4 , if_2(15, 17, 18) -> 6 , c_0() -> 2 , c_0() -> 4 , c_0() -> 6 , c_1() -> 4 , c_1() -> 6 , c_1() -> 8 , c_2() -> 4 , c_2() -> 6 , c_2() -> 17 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 6 , n__f_1(6) -> 4 , n__f_1(6) -> 6 , n__f_1(10) -> 4 , n__f_1(10) -> 6 , n__f_1(10) -> 9 , n__f_2(15) -> 4 , n__f_2(15) -> 6 , n__f_2(19) -> 4 , n__f_2(19) -> 6 , n__f_2(19) -> 18 , n__true_0() -> 2 , n__true_0() -> 4 , n__true_0() -> 6 , n__true_1() -> 6 , n__true_1() -> 10 , n__true_1() -> 15 , n__true_2() -> 15 , n__true_2() -> 19 , true_0() -> 4 , true_1() -> 6 , true_2() -> 15 , false_0() -> 2 , false_0() -> 4 , false_0() -> 6 , activate_0(2) -> 4 , activate_1(2) -> 6 , activate_1(9) -> 4 , activate_1(9) -> 6 , activate_1(18) -> 4 , activate_1(18) -> 6 , activate_2(10) -> 15 , activate_2(19) -> 15 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(6) -> 7 , f^#_2(15) -> 16 , c_0_0(1) -> 1 , c_0_0(5) -> 3 , c_0_1(11) -> 1 , c_0_1(12) -> 3 , c_0_1(13) -> 7 , c_0_2(20) -> 7 , c_0_2(21) -> 16 , if^#_0(2, 2, 2) -> 1 , if^#_0(4, 2, 2) -> 5 , if^#_1(2, 8, 9) -> 11 , if^#_1(4, 8, 9) -> 12 , if^#_1(6, 8, 9) -> 13 , if^#_2(6, 17, 18) -> 20 , if^#_2(15, 17, 18) -> 21 , c_2_0(1) -> 1 , c_2_0(1) -> 5 , c_2_1(14) -> 11 , c_2_1(14) -> 12 , c_2_1(14) -> 13 , c_2_1(22) -> 20 , activate^#_0(2) -> 1 , activate^#_1(9) -> 14 , activate^#_1(18) -> 22 , true^#_0() -> 1 , c_4_0() -> 1 , c_5_0(3) -> 1 , c_5_1(7) -> 1 , c_5_2(16) -> 14 , c_5_2(16) -> 22 , c_6_0(1) -> 1} 2) { f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , activate^#(n__f(X)) -> c_5(f^#(activate(X))) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , activate^#(n__true()) -> c_6(true^#())} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__true()) -> true() , activate(X) -> X , f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , true() -> n__true() , if(true(), X, Y) -> X , if(false(), X, Y) -> activate(Y)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__true()) -> true() , activate(X) -> X , f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , true() -> n__true() , if(true(), X, Y) -> X , if(false(), X, Y) -> activate(Y) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , activate^#(n__f(X)) -> c_5(f^#(activate(X))) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , activate^#(n__true()) -> c_6(true^#())} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [1] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__true()) -> c_6(true^#())} and weakly orienting the rules { activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__true()) -> c_6(true^#())} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {true() -> n__true()} and weakly orienting the rules { activate^#(n__true()) -> c_6(true^#()) , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {true() -> n__true()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [1] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [1] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))} and weakly orienting the rules { true() -> n__true() , activate^#(n__true()) -> c_6(true^#()) , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [4] c_0(x1) = [1] x1 + [1] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [4] c_6(x1) = [1] x1 + [1] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {if^#(false(), X, Y) -> c_2(activate^#(Y))} and weakly orienting the rules { f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate^#(n__true()) -> c_6(true^#()) , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if^#(false(), X, Y) -> c_2(activate^#(Y))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [8] c_1() = [0] c_2(x1) = [1] x1 + [1] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [1] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {if(false(), X, Y) -> activate(Y)} and weakly orienting the rules { if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate^#(n__true()) -> c_6(true^#()) , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if(false(), X, Y) -> activate(Y)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [0] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [8] c_6(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_5(f^#(activate(X)))} and weakly orienting the rules { if(false(), X, Y) -> activate(Y) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate^#(n__true()) -> c_6(true^#()) , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_5(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [8] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [1] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X)} and weakly orienting the rules { activate^#(n__f(X)) -> c_5(f^#(activate(X))) , if(false(), X, Y) -> activate(Y) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate^#(n__true()) -> c_6(true^#()) , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [8] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [1] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , activate^#(n__f(X)) -> c_5(f^#(activate(X))) , if(false(), X, Y) -> activate(Y) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate^#(n__true()) -> c_6(true^#()) , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , activate^#(n__f(X)) -> c_5(f^#(activate(X))) , if(false(), X, Y) -> activate(Y) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate^#(n__true()) -> c_6(true^#()) , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { f_1(6) -> 4 , f_1(6) -> 6 , f_2(15) -> 4 , f_2(15) -> 6 , if_1(6, 7, 8) -> 4 , if_1(6, 7, 8) -> 6 , if_2(6, 16, 17) -> 4 , if_2(6, 16, 17) -> 6 , if_2(15, 16, 17) -> 4 , if_2(15, 16, 17) -> 6 , c_0() -> 2 , c_0() -> 4 , c_0() -> 6 , c_1() -> 4 , c_1() -> 6 , c_1() -> 7 , c_2() -> 4 , c_2() -> 6 , c_2() -> 16 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 6 , n__f_1(6) -> 4 , n__f_1(6) -> 6 , n__f_1(9) -> 4 , n__f_1(9) -> 6 , n__f_1(9) -> 8 , n__f_2(15) -> 4 , n__f_2(15) -> 6 , n__f_2(18) -> 4 , n__f_2(18) -> 6 , n__f_2(18) -> 17 , n__true_0() -> 2 , n__true_0() -> 4 , n__true_0() -> 6 , n__true_1() -> 6 , n__true_1() -> 9 , n__true_1() -> 15 , n__true_2() -> 15 , n__true_2() -> 18 , true_0() -> 4 , true_1() -> 6 , true_2() -> 15 , false_0() -> 2 , false_0() -> 4 , false_0() -> 6 , activate_0(2) -> 4 , activate_1(2) -> 6 , activate_1(8) -> 4 , activate_1(8) -> 6 , activate_1(17) -> 4 , activate_1(17) -> 6 , activate_2(9) -> 15 , activate_2(18) -> 15 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(6) -> 10 , f^#_2(15) -> 19 , c_0_0(1) -> 1 , c_0_0(5) -> 3 , c_0_1(11) -> 1 , c_0_1(12) -> 3 , c_0_1(13) -> 10 , c_0_2(20) -> 10 , c_0_2(21) -> 19 , if^#_0(2, 2, 2) -> 1 , if^#_0(4, 2, 2) -> 5 , if^#_1(2, 7, 8) -> 11 , if^#_1(4, 7, 8) -> 12 , if^#_1(6, 7, 8) -> 13 , if^#_2(6, 16, 17) -> 20 , if^#_2(15, 16, 17) -> 21 , c_2_0(1) -> 1 , c_2_0(1) -> 5 , c_2_1(14) -> 11 , c_2_1(14) -> 12 , c_2_1(14) -> 13 , c_2_1(22) -> 20 , activate^#_0(2) -> 1 , activate^#_1(8) -> 14 , activate^#_1(17) -> 22 , true^#_0() -> 1 , c_5_0(3) -> 1 , c_5_1(10) -> 1 , c_5_2(19) -> 14 , c_5_2(19) -> 22 , c_6_0(1) -> 1} 3) { f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , activate^#(n__f(X)) -> c_5(f^#(activate(X))) , if^#(false(), X, Y) -> c_2(activate^#(Y))} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__true()) -> true() , activate(X) -> X , f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , true() -> n__true() , if(true(), X, Y) -> X , if(false(), X, Y) -> activate(Y)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__true()) -> true() , activate(X) -> X , f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , true() -> n__true() , if(true(), X, Y) -> X , if(false(), X, Y) -> activate(Y) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , activate^#(n__f(X)) -> c_5(f^#(activate(X))) , if^#(false(), X, Y) -> c_2(activate^#(Y))} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {true() -> n__true()} and weakly orienting the rules { activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {true() -> n__true()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [1] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [3] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))} and weakly orienting the rules { true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [2] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {if^#(false(), X, Y) -> c_2(activate^#(Y))} and weakly orienting the rules { f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if^#(false(), X, Y) -> c_2(activate^#(Y))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [12] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {if(false(), X, Y) -> activate(Y)} and weakly orienting the rules { if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if(false(), X, Y) -> activate(Y)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [15] c_0(x1) = [1] x1 + [1] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [0] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate(n__f(X)) -> f(activate(X))} and weakly orienting the rules { if(false(), X, Y) -> activate(Y) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate(n__f(X)) -> f(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [3] n__true() = [0] true() = [1] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [0] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [8] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_5(f^#(activate(X)))} and weakly orienting the rules { activate(n__f(X)) -> f(activate(X)) , if(false(), X, Y) -> activate(Y) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_5(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [8] activate(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X)} Weak Rules: { activate^#(n__f(X)) -> c_5(f^#(activate(X))) , activate(n__f(X)) -> f(activate(X)) , if(false(), X, Y) -> activate(Y) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X)} Weak Rules: { activate^#(n__f(X)) -> c_5(f^#(activate(X))) , activate(n__f(X)) -> f(activate(X)) , if(false(), X, Y) -> activate(Y) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_0(4) -> 4 , f_1(10) -> 10 , f_1(17) -> 4 , f_2(22) -> 10 , if_1(4, 6, 7) -> 4 , if_2(10, 14, 15) -> 10 , if_2(17, 14, 15) -> 4 , if_3(22, 25, 26) -> 10 , c_0() -> 2 , c_0() -> 4 , c_0() -> 10 , c_1() -> 4 , c_1() -> 6 , c_2() -> 4 , c_2() -> 10 , c_2() -> 14 , c_3() -> 10 , c_3() -> 25 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 10 , n__f_1(4) -> 4 , n__f_1(8) -> 4 , n__f_1(8) -> 7 , n__f_2(10) -> 10 , n__f_2(16) -> 10 , n__f_2(16) -> 15 , n__f_2(17) -> 4 , n__f_3(22) -> 10 , n__f_3(27) -> 26 , n__true_0() -> 2 , n__true_0() -> 4 , n__true_0() -> 10 , n__true_1() -> 8 , n__true_1() -> 10 , n__true_1() -> 17 , n__true_1() -> 21 , n__true_2() -> 16 , n__true_2() -> 21 , n__true_2() -> 22 , n__true_3() -> 27 , true_0() -> 4 , true_1() -> 10 , true_1() -> 17 , true_2() -> 21 , true_2() -> 22 , false_0() -> 2 , false_0() -> 4 , false_0() -> 10 , activate_0(2) -> 4 , activate_1(2) -> 10 , activate_1(7) -> 4 , activate_1(8) -> 17 , activate_1(15) -> 10 , activate_2(8) -> 21 , activate_2(16) -> 22 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(10) -> 9 , f^#_2(21) -> 20 , f^#_2(22) -> 28 , c_0_0(1) -> 1 , c_0_0(5) -> 3 , c_0_1(11) -> 1 , c_0_1(12) -> 3 , c_0_1(13) -> 9 , c_0_2(19) -> 9 , c_0_2(24) -> 20 , c_0_3(29) -> 20 , c_0_3(30) -> 28 , if^#_0(2, 2, 2) -> 1 , if^#_0(4, 2, 2) -> 5 , if^#_1(2, 6, 7) -> 11 , if^#_1(4, 6, 7) -> 12 , if^#_1(10, 6, 7) -> 13 , if^#_2(10, 14, 15) -> 19 , if^#_2(21, 14, 15) -> 24 , if^#_3(21, 25, 26) -> 29 , if^#_3(22, 25, 26) -> 30 , c_2_0(1) -> 1 , c_2_0(1) -> 5 , c_2_1(18) -> 11 , c_2_1(18) -> 12 , c_2_1(18) -> 13 , c_2_1(23) -> 19 , activate^#_0(2) -> 1 , activate^#_1(7) -> 18 , activate^#_1(15) -> 23 , c_5_0(3) -> 1 , c_5_1(9) -> 1 , c_5_2(20) -> 18 , c_5_2(28) -> 23} 4) { f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , activate^#(n__f(X)) -> c_5(f^#(activate(X))) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , activate^#(X) -> c_7()} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__true()) -> true() , activate(X) -> X , f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , true() -> n__true() , if(true(), X, Y) -> X , if(false(), X, Y) -> activate(Y)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__true()) -> true() , activate(X) -> X , f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , true() -> n__true() , if(true(), X, Y) -> X , if(false(), X, Y) -> activate(Y) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , activate^#(n__f(X)) -> c_5(f^#(activate(X))) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , activate^#(X) -> c_7()} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , activate^#(X) -> c_7()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , activate^#(X) -> c_7()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {true() -> n__true()} and weakly orienting the rules { activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , activate^#(X) -> c_7()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {true() -> n__true()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [1] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [3] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {if^#(false(), X, Y) -> c_2(activate^#(Y))} and weakly orienting the rules { true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , activate^#(X) -> c_7()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if^#(false(), X, Y) -> c_2(activate^#(Y))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))} and weakly orienting the rules { if^#(false(), X, Y) -> c_2(activate^#(Y)) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , activate^#(X) -> c_7()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [2] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [0] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {if(false(), X, Y) -> activate(Y)} and weakly orienting the rules { f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , activate^#(X) -> c_7()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if(false(), X, Y) -> activate(Y)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [9] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate(n__f(X)) -> f(activate(X))} and weakly orienting the rules { if(false(), X, Y) -> activate(Y) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , activate^#(X) -> c_7()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate(n__f(X)) -> f(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [3] n__true() = [0] true() = [1] false() = [9] activate(x1) = [1] x1 + [8] f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [5] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_5(f^#(activate(X)))} and weakly orienting the rules { activate(n__f(X)) -> f(activate(X)) , if(false(), X, Y) -> activate(Y) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , activate^#(X) -> c_7()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_5(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [9] activate(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X)} Weak Rules: { activate^#(n__f(X)) -> c_5(f^#(activate(X))) , activate(n__f(X)) -> f(activate(X)) , if(false(), X, Y) -> activate(Y) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , activate^#(X) -> c_7()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X)} Weak Rules: { activate^#(n__f(X)) -> c_5(f^#(activate(X))) , activate(n__f(X)) -> f(activate(X)) , if(false(), X, Y) -> activate(Y) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , activate^#(X) -> c_7()} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_0(4) -> 4 , f_1(10) -> 10 , f_1(20) -> 4 , f_2(25) -> 10 , if_1(4, 6, 7) -> 4 , if_2(10, 15, 16) -> 10 , if_2(20, 15, 16) -> 4 , if_3(25, 27, 28) -> 10 , c_0() -> 2 , c_0() -> 4 , c_0() -> 10 , c_1() -> 4 , c_1() -> 6 , c_2() -> 4 , c_2() -> 10 , c_2() -> 15 , c_3() -> 10 , c_3() -> 27 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 10 , n__f_1(4) -> 4 , n__f_1(8) -> 4 , n__f_1(8) -> 7 , n__f_2(10) -> 10 , n__f_2(17) -> 10 , n__f_2(17) -> 16 , n__f_2(20) -> 4 , n__f_3(25) -> 10 , n__f_3(29) -> 28 , n__true_0() -> 2 , n__true_0() -> 4 , n__true_0() -> 10 , n__true_1() -> 8 , n__true_1() -> 10 , n__true_1() -> 19 , n__true_1() -> 20 , n__true_2() -> 17 , n__true_2() -> 19 , n__true_2() -> 25 , n__true_3() -> 29 , true_0() -> 4 , true_1() -> 10 , true_1() -> 20 , true_2() -> 19 , true_2() -> 25 , false_0() -> 2 , false_0() -> 4 , false_0() -> 10 , activate_0(2) -> 4 , activate_1(2) -> 10 , activate_1(7) -> 4 , activate_1(8) -> 20 , activate_1(16) -> 10 , activate_2(8) -> 19 , activate_2(17) -> 25 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(10) -> 9 , f^#_2(19) -> 18 , f^#_2(25) -> 24 , c_0_0(1) -> 1 , c_0_0(5) -> 3 , c_0_1(11) -> 1 , c_0_1(12) -> 3 , c_0_1(13) -> 9 , c_0_2(21) -> 9 , c_0_2(22) -> 18 , c_0_2(26) -> 24 , c_0_3(30) -> 18 , c_0_3(31) -> 24 , if^#_0(2, 2, 2) -> 1 , if^#_0(4, 2, 2) -> 5 , if^#_1(2, 6, 7) -> 11 , if^#_1(4, 6, 7) -> 12 , if^#_1(10, 6, 7) -> 13 , if^#_2(10, 15, 16) -> 21 , if^#_2(19, 15, 16) -> 22 , if^#_2(25, 15, 16) -> 26 , if^#_3(19, 27, 28) -> 30 , if^#_3(25, 27, 28) -> 31 , c_2_0(1) -> 1 , c_2_0(1) -> 5 , c_2_1(14) -> 11 , c_2_1(14) -> 12 , c_2_1(14) -> 13 , c_2_1(23) -> 21 , activate^#_0(2) -> 1 , activate^#_1(7) -> 14 , activate^#_1(16) -> 23 , c_5_0(3) -> 1 , c_5_1(9) -> 1 , c_5_2(18) -> 14 , c_5_2(24) -> 23 , c_7_0() -> 1 , c_7_1() -> 14 , c_7_1() -> 23} 5) { f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , activate^#(n__f(X)) -> c_5(f^#(activate(X))) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , if^#(true(), X, Y) -> c_1()} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__true()) -> true() , activate(X) -> X , f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , true() -> n__true() , if(true(), X, Y) -> X , if(false(), X, Y) -> activate(Y)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__true()) -> true() , activate(X) -> X , f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , true() -> n__true() , if(true(), X, Y) -> X , if(false(), X, Y) -> activate(Y) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , activate^#(n__f(X)) -> c_5(f^#(activate(X))) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , if^#(true(), X, Y) -> c_1()} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , if^#(false(), X, Y) -> c_2(activate^#(Y)) , if^#(true(), X, Y) -> c_1()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , if^#(false(), X, Y) -> c_2(activate^#(Y)) , if^#(true(), X, Y) -> c_1()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {true() -> n__true()} and weakly orienting the rules { activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , if^#(false(), X, Y) -> c_2(activate^#(Y)) , if^#(true(), X, Y) -> c_1()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {true() -> n__true()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [1] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [0] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))} and weakly orienting the rules { true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , if^#(false(), X, Y) -> c_2(activate^#(Y)) , if^#(true(), X, Y) -> c_1()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [0] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {if(false(), X, Y) -> activate(Y)} and weakly orienting the rules { f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , if^#(false(), X, Y) -> c_2(activate^#(Y)) , if^#(true(), X, Y) -> c_1()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if(false(), X, Y) -> activate(Y)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [1] activate^#(x1) = [1] x1 + [0] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X)} and weakly orienting the rules { if(false(), X, Y) -> activate(Y) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , if^#(false(), X, Y) -> c_2(activate^#(Y)) , if^#(true(), X, Y) -> c_1()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [9] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c() = [0] n__f(x1) = [1] x1 + [6] n__true() = [0] true() = [1] false() = [8] activate(x1) = [1] x1 + [8] f^#(x1) = [1] x1 + [7] c_0(x1) = [1] x1 + [1] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [8] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_5(f^#(activate(X)))} and weakly orienting the rules { f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , if(false(), X, Y) -> activate(Y) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , if^#(false(), X, Y) -> c_2(activate^#(Y)) , if^#(true(), X, Y) -> c_1()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_5(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [8] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [3] activate^#(x1) = [1] x1 + [2] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { activate^#(n__f(X)) -> c_5(f^#(activate(X))) , f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , if(false(), X, Y) -> activate(Y) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , if^#(false(), X, Y) -> c_2(activate^#(Y)) , if^#(true(), X, Y) -> c_1()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { activate^#(n__f(X)) -> c_5(f^#(activate(X))) , f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , if(false(), X, Y) -> activate(Y) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , true() -> n__true() , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X , if^#(false(), X, Y) -> c_2(activate^#(Y)) , if^#(true(), X, Y) -> c_1()} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { f_1(6) -> 4 , f_1(6) -> 6 , f_2(18) -> 4 , f_2(18) -> 6 , if_1(6, 8, 9) -> 4 , if_1(6, 8, 9) -> 6 , if_2(6, 20, 21) -> 4 , if_2(6, 20, 21) -> 6 , if_2(18, 20, 21) -> 4 , if_2(18, 20, 21) -> 6 , c_0() -> 2 , c_0() -> 4 , c_0() -> 6 , c_1() -> 4 , c_1() -> 6 , c_1() -> 8 , c_2() -> 4 , c_2() -> 6 , c_2() -> 20 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 6 , n__f_1(6) -> 4 , n__f_1(6) -> 6 , n__f_1(10) -> 4 , n__f_1(10) -> 6 , n__f_1(10) -> 9 , n__f_2(18) -> 4 , n__f_2(18) -> 6 , n__f_2(22) -> 4 , n__f_2(22) -> 6 , n__f_2(22) -> 21 , n__true_0() -> 2 , n__true_0() -> 4 , n__true_0() -> 6 , n__true_1() -> 6 , n__true_1() -> 10 , n__true_1() -> 16 , n__true_1() -> 18 , n__true_2() -> 18 , n__true_2() -> 22 , true_0() -> 4 , true_1() -> 6 , true_1() -> 16 , true_2() -> 18 , false_0() -> 2 , false_0() -> 4 , false_0() -> 6 , activate_0(2) -> 4 , activate_1(2) -> 6 , activate_1(9) -> 4 , activate_1(9) -> 6 , activate_1(10) -> 16 , activate_1(21) -> 4 , activate_1(21) -> 6 , activate_2(10) -> 18 , activate_2(22) -> 18 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(6) -> 7 , f^#_1(16) -> 15 , f^#_2(18) -> 19 , c_0_0(1) -> 1 , c_0_0(5) -> 3 , c_0_1(11) -> 1 , c_0_1(12) -> 3 , c_0_1(13) -> 7 , c_0_1(17) -> 15 , c_0_2(23) -> 7 , c_0_2(24) -> 15 , c_0_2(25) -> 19 , if^#_0(2, 2, 2) -> 1 , if^#_0(4, 2, 2) -> 5 , if^#_1(2, 8, 9) -> 11 , if^#_1(4, 8, 9) -> 12 , if^#_1(6, 8, 9) -> 13 , if^#_1(16, 8, 9) -> 17 , if^#_2(6, 20, 21) -> 23 , if^#_2(16, 20, 21) -> 24 , if^#_2(18, 20, 21) -> 25 , c_1_0() -> 5 , c_1_1() -> 12 , c_1_1() -> 13 , c_1_1() -> 17 , c_1_2() -> 23 , c_1_2() -> 24 , c_1_2() -> 25 , c_2_0(1) -> 1 , c_2_0(1) -> 5 , c_2_1(14) -> 11 , c_2_1(14) -> 12 , c_2_1(14) -> 13 , c_2_1(26) -> 23 , activate^#_0(2) -> 1 , activate^#_1(9) -> 14 , activate^#_1(21) -> 26 , c_5_0(3) -> 1 , c_5_1(7) -> 1 , c_5_1(15) -> 14 , c_5_2(19) -> 14 , c_5_2(19) -> 26} 6) { f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , activate^#(n__f(X)) -> c_5(f^#(activate(X))) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_3()} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__true()) -> true() , activate(X) -> X , f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , true() -> n__true() , if(true(), X, Y) -> X , if(false(), X, Y) -> activate(Y)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__true()) -> true() , activate(X) -> X , f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , true() -> n__true() , if(true(), X, Y) -> X , if(false(), X, Y) -> activate(Y) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , activate^#(n__f(X)) -> c_5(f^#(activate(X))) , if^#(false(), X, Y) -> c_2(activate^#(Y)) , f^#(X) -> c_3()} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { true() -> n__true() , if^#(false(), X, Y) -> c_2(activate^#(Y))} and weakly orienting the rules { activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { true() -> n__true() , if^#(false(), X, Y) -> c_2(activate^#(Y))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [1] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , f^#(X) -> c_3()} and weakly orienting the rules { true() -> n__true() , if^#(false(), X, Y) -> c_2(activate^#(Y)) , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , f^#(X) -> c_3()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [0] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {if(false(), X, Y) -> activate(Y)} and weakly orienting the rules { f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , f^#(X) -> c_3() , true() -> n__true() , if^#(false(), X, Y) -> c_2(activate^#(Y)) , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {if(false(), X, Y) -> activate(Y)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [9] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate(n__f(X)) -> f(activate(X))} and weakly orienting the rules { if(false(), X, Y) -> activate(Y) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , f^#(X) -> c_3() , true() -> n__true() , if^#(false(), X, Y) -> c_2(activate^#(Y)) , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate(n__f(X)) -> f(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [1] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [3] c() = [0] n__f(x1) = [1] x1 + [3] n__true() = [0] true() = [1] false() = [10] activate(x1) = [1] x1 + [8] f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4] c_1() = [0] c_2(x1) = [1] x1 + [0] activate^#(x1) = [1] x1 + [5] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_5(f^#(activate(X)))} and weakly orienting the rules { activate(n__f(X)) -> f(activate(X)) , if(false(), X, Y) -> activate(Y) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , f^#(X) -> c_3() , true() -> n__true() , if^#(false(), X, Y) -> c_2(activate^#(Y)) , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_5(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1] c() = [0] n__f(x1) = [1] x1 + [0] n__true() = [0] true() = [0] false() = [9] activate(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0] c_1() = [0] c_2(x1) = [1] x1 + [2] activate^#(x1) = [1] x1 + [1] c_3() = [0] true^#() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X)} Weak Rules: { activate^#(n__f(X)) -> c_5(f^#(activate(X))) , activate(n__f(X)) -> f(activate(X)) , if(false(), X, Y) -> activate(Y) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , f^#(X) -> c_3() , true() -> n__true() , if^#(false(), X, Y) -> c_2(activate^#(Y)) , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X)} Weak Rules: { activate^#(n__f(X)) -> c_5(f^#(activate(X))) , activate(n__f(X)) -> f(activate(X)) , if(false(), X, Y) -> activate(Y) , f^#(X) -> c_0(if^#(X, c(), n__f(n__true()))) , f^#(X) -> c_3() , true() -> n__true() , if^#(false(), X, Y) -> c_2(activate^#(Y)) , activate(n__true()) -> true() , activate(X) -> X , if(true(), X, Y) -> X} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_0(4) -> 4 , f_1(10) -> 10 , f_1(20) -> 4 , f_2(25) -> 10 , if_1(4, 6, 7) -> 4 , if_2(10, 15, 16) -> 10 , if_2(20, 15, 16) -> 4 , if_3(25, 27, 28) -> 10 , c_0() -> 2 , c_0() -> 4 , c_0() -> 10 , c_1() -> 4 , c_1() -> 6 , c_2() -> 4 , c_2() -> 10 , c_2() -> 15 , c_3() -> 10 , c_3() -> 27 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 10 , n__f_1(4) -> 4 , n__f_1(8) -> 4 , n__f_1(8) -> 7 , n__f_2(10) -> 10 , n__f_2(17) -> 10 , n__f_2(17) -> 16 , n__f_2(20) -> 4 , n__f_3(25) -> 10 , n__f_3(29) -> 28 , n__true_0() -> 2 , n__true_0() -> 4 , n__true_0() -> 10 , n__true_1() -> 8 , n__true_1() -> 10 , n__true_1() -> 19 , n__true_1() -> 20 , n__true_2() -> 17 , n__true_2() -> 19 , n__true_2() -> 25 , n__true_3() -> 29 , true_0() -> 4 , true_1() -> 10 , true_1() -> 20 , true_2() -> 19 , true_2() -> 25 , false_0() -> 2 , false_0() -> 4 , false_0() -> 10 , activate_0(2) -> 4 , activate_1(2) -> 10 , activate_1(7) -> 4 , activate_1(8) -> 20 , activate_1(16) -> 10 , activate_2(8) -> 19 , activate_2(17) -> 25 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(10) -> 9 , f^#_2(19) -> 18 , f^#_2(25) -> 24 , c_0_0(1) -> 1 , c_0_0(5) -> 3 , c_0_1(11) -> 1 , c_0_1(12) -> 3 , c_0_1(13) -> 9 , c_0_2(21) -> 9 , c_0_2(22) -> 18 , c_0_2(26) -> 24 , c_0_3(30) -> 18 , c_0_3(31) -> 24 , if^#_0(2, 2, 2) -> 1 , if^#_0(4, 2, 2) -> 5 , if^#_1(2, 6, 7) -> 11 , if^#_1(4, 6, 7) -> 12 , if^#_1(10, 6, 7) -> 13 , if^#_2(10, 15, 16) -> 21 , if^#_2(19, 15, 16) -> 22 , if^#_2(25, 15, 16) -> 26 , if^#_3(19, 27, 28) -> 30 , if^#_3(25, 27, 28) -> 31 , c_2_0(1) -> 1 , c_2_0(1) -> 5 , c_2_1(14) -> 11 , c_2_1(14) -> 12 , c_2_1(14) -> 13 , c_2_1(23) -> 21 , activate^#_0(2) -> 1 , activate^#_1(7) -> 14 , activate^#_1(16) -> 23 , c_3_0() -> 1 , c_3_0() -> 3 , c_3_1() -> 9 , c_3_2() -> 18 , c_3_2() -> 24 , c_5_0(3) -> 1 , c_5_1(9) -> 1 , c_5_2(18) -> 14 , c_5_2(24) -> 23}