'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  f(X) -> if(X, c(), n__f(n__true()))
     , if(true(), X, Y) -> X
     , if(false(), X, Y) -> activate(Y)
     , f(X) -> n__f(X)
     , true() -> n__true()
     , activate(n__f(X)) -> f(activate(X))
     , activate(n__true()) -> true()
     , activate(X) -> X}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
    , if^#(true(), X, Y) -> c_1()
    , if^#(false(), X, Y) -> c_2(activate^#(Y))
    , f^#(X) -> c_3()
    , true^#() -> c_4()
    , activate^#(n__f(X)) -> c_5(f^#(activate(X)))
    , activate^#(n__true()) -> c_6(true^#())
    , activate^#(X) -> c_7()}
  
  The usable rules are:
   {  activate(n__f(X)) -> f(activate(X))
    , activate(n__true()) -> true()
    , activate(X) -> X
    , f(X) -> if(X, c(), n__f(n__true()))
    , f(X) -> n__f(X)
    , true() -> n__true()
    , if(true(), X, Y) -> X
    , if(false(), X, Y) -> activate(Y)}
  
  The estimated dependency graph contains the following edges:
   {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))}
     ==> {if^#(false(), X, Y) -> c_2(activate^#(Y))}
   {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))}
     ==> {if^#(true(), X, Y) -> c_1()}
   {if^#(false(), X, Y) -> c_2(activate^#(Y))}
     ==> {activate^#(n__true()) -> c_6(true^#())}
   {if^#(false(), X, Y) -> c_2(activate^#(Y))}
     ==> {activate^#(n__f(X)) -> c_5(f^#(activate(X)))}
   {if^#(false(), X, Y) -> c_2(activate^#(Y))}
     ==> {activate^#(X) -> c_7()}
   {activate^#(n__f(X)) -> c_5(f^#(activate(X)))}
     ==> {f^#(X) -> c_3()}
   {activate^#(n__f(X)) -> c_5(f^#(activate(X)))}
     ==> {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))}
   {activate^#(n__true()) -> c_6(true^#())}
     ==> {true^#() -> c_4()}
  
  We consider the following path(s):
   1) {  f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
       , activate^#(n__f(X)) -> c_5(f^#(activate(X)))
       , if^#(false(), X, Y) -> c_2(activate^#(Y))
       , activate^#(n__true()) -> c_6(true^#())
       , true^#() -> c_4()}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__true()) -> true()
       , activate(X) -> X
       , f(X) -> if(X, c(), n__f(n__true()))
       , f(X) -> n__f(X)
       , true() -> n__true()
       , if(true(), X, Y) -> X
       , if(false(), X, Y) -> activate(Y)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__true()) -> true()
               , activate(X) -> X
               , f(X) -> if(X, c(), n__f(n__true()))
               , f(X) -> n__f(X)
               , true() -> n__true()
               , if(true(), X, Y) -> X
               , if(false(), X, Y) -> activate(Y)
               , activate^#(n__true()) -> c_6(true^#())
               , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
               , activate^#(n__f(X)) -> c_5(f^#(activate(X)))
               , if^#(false(), X, Y) -> c_2(activate^#(Y))
               , true^#() -> c_4()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(n__true()) -> true()
               , activate(X) -> X
               , if(true(), X, Y) -> X}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {true() -> n__true()}
            and weakly orienting the rules
            {  activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {true() -> n__true()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [1]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))}
            and weakly orienting the rules
            {  true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [1]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {if^#(false(), X, Y) -> c_2(activate^#(Y))}
            and weakly orienting the rules
            {  f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if^#(false(), X, Y) -> c_2(activate^#(Y))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [8]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__true()) -> c_6(true^#())}
            and weakly orienting the rules
            {  if^#(false(), X, Y) -> c_2(activate^#(Y))
             , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__true()) -> c_6(true^#())}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [15]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {true^#() -> c_4()}
            and weakly orienting the rules
            {  activate^#(n__true()) -> c_6(true^#())
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {true^#() -> c_4()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [7]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [1]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [8]
                  c_6(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {if(false(), X, Y) -> activate(Y)}
            and weakly orienting the rules
            {  true^#() -> c_4()
             , activate^#(n__true()) -> c_6(true^#())
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if(false(), X, Y) -> activate(Y)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [8]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [15]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  f(X) -> if(X, c(), n__f(n__true()))
             , f(X) -> n__f(X)}
            and weakly orienting the rules
            {  if(false(), X, Y) -> activate(Y)
             , true^#() -> c_4()
             , activate^#(n__true()) -> c_6(true^#())
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  f(X) -> if(X, c(), n__f(n__true()))
               , f(X) -> n__f(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [8]
                  activate(x1) = [1] x1 + [8]
                  f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [8]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_5(f^#(activate(X)))}
            and weakly orienting the rules
            {  f(X) -> if(X, c(), n__f(n__true()))
             , f(X) -> n__f(X)
             , if(false(), X, Y) -> activate(Y)
             , true^#() -> c_4()
             , activate^#(n__true()) -> c_6(true^#())
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_5(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [8]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [8]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [8]
                  c_3() = [0]
                  true^#() = [8]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {activate(n__f(X)) -> f(activate(X))}
              Weak Rules:
                {  activate^#(n__f(X)) -> c_5(f^#(activate(X)))
                 , f(X) -> if(X, c(), n__f(n__true()))
                 , f(X) -> n__f(X)
                 , if(false(), X, Y) -> activate(Y)
                 , true^#() -> c_4()
                 , activate^#(n__true()) -> c_6(true^#())
                 , if^#(false(), X, Y) -> c_2(activate^#(Y))
                 , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
                 , true() -> n__true()
                 , activate(n__true()) -> true()
                 , activate(X) -> X
                 , if(true(), X, Y) -> X}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {activate(n__f(X)) -> f(activate(X))}
                Weak Rules:
                  {  activate^#(n__f(X)) -> c_5(f^#(activate(X)))
                   , f(X) -> if(X, c(), n__f(n__true()))
                   , f(X) -> n__f(X)
                   , if(false(), X, Y) -> activate(Y)
                   , true^#() -> c_4()
                   , activate^#(n__true()) -> c_6(true^#())
                   , if^#(false(), X, Y) -> c_2(activate^#(Y))
                   , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
                   , true() -> n__true()
                   , activate(n__true()) -> true()
                   , activate(X) -> X
                   , if(true(), X, Y) -> X}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  f_1(6) -> 4
                 , f_1(6) -> 6
                 , f_2(15) -> 4
                 , f_2(15) -> 6
                 , if_1(6, 8, 9) -> 4
                 , if_1(6, 8, 9) -> 6
                 , if_2(6, 17, 18) -> 4
                 , if_2(6, 17, 18) -> 6
                 , if_2(15, 17, 18) -> 4
                 , if_2(15, 17, 18) -> 6
                 , c_0() -> 2
                 , c_0() -> 4
                 , c_0() -> 6
                 , c_1() -> 4
                 , c_1() -> 6
                 , c_1() -> 8
                 , c_2() -> 4
                 , c_2() -> 6
                 , c_2() -> 17
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 6
                 , n__f_1(6) -> 4
                 , n__f_1(6) -> 6
                 , n__f_1(10) -> 4
                 , n__f_1(10) -> 6
                 , n__f_1(10) -> 9
                 , n__f_2(15) -> 4
                 , n__f_2(15) -> 6
                 , n__f_2(19) -> 4
                 , n__f_2(19) -> 6
                 , n__f_2(19) -> 18
                 , n__true_0() -> 2
                 , n__true_0() -> 4
                 , n__true_0() -> 6
                 , n__true_1() -> 6
                 , n__true_1() -> 10
                 , n__true_1() -> 15
                 , n__true_2() -> 15
                 , n__true_2() -> 19
                 , true_0() -> 4
                 , true_1() -> 6
                 , true_2() -> 15
                 , false_0() -> 2
                 , false_0() -> 4
                 , false_0() -> 6
                 , activate_0(2) -> 4
                 , activate_1(2) -> 6
                 , activate_1(9) -> 4
                 , activate_1(9) -> 6
                 , activate_1(18) -> 4
                 , activate_1(18) -> 6
                 , activate_2(10) -> 15
                 , activate_2(19) -> 15
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 3
                 , f^#_1(6) -> 7
                 , f^#_2(15) -> 16
                 , c_0_0(1) -> 1
                 , c_0_0(5) -> 3
                 , c_0_1(11) -> 1
                 , c_0_1(12) -> 3
                 , c_0_1(13) -> 7
                 , c_0_2(20) -> 7
                 , c_0_2(21) -> 16
                 , if^#_0(2, 2, 2) -> 1
                 , if^#_0(4, 2, 2) -> 5
                 , if^#_1(2, 8, 9) -> 11
                 , if^#_1(4, 8, 9) -> 12
                 , if^#_1(6, 8, 9) -> 13
                 , if^#_2(6, 17, 18) -> 20
                 , if^#_2(15, 17, 18) -> 21
                 , c_2_0(1) -> 1
                 , c_2_0(1) -> 5
                 , c_2_1(14) -> 11
                 , c_2_1(14) -> 12
                 , c_2_1(14) -> 13
                 , c_2_1(22) -> 20
                 , activate^#_0(2) -> 1
                 , activate^#_1(9) -> 14
                 , activate^#_1(18) -> 22
                 , true^#_0() -> 1
                 , c_4_0() -> 1
                 , c_5_0(3) -> 1
                 , c_5_1(7) -> 1
                 , c_5_2(16) -> 14
                 , c_5_2(16) -> 22
                 , c_6_0(1) -> 1}
      
   2) {  f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
       , activate^#(n__f(X)) -> c_5(f^#(activate(X)))
       , if^#(false(), X, Y) -> c_2(activate^#(Y))
       , activate^#(n__true()) -> c_6(true^#())}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__true()) -> true()
       , activate(X) -> X
       , f(X) -> if(X, c(), n__f(n__true()))
       , f(X) -> n__f(X)
       , true() -> n__true()
       , if(true(), X, Y) -> X
       , if(false(), X, Y) -> activate(Y)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__true()) -> true()
               , activate(X) -> X
               , f(X) -> if(X, c(), n__f(n__true()))
               , f(X) -> n__f(X)
               , true() -> n__true()
               , if(true(), X, Y) -> X
               , if(false(), X, Y) -> activate(Y)
               , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
               , activate^#(n__f(X)) -> c_5(f^#(activate(X)))
               , if^#(false(), X, Y) -> c_2(activate^#(Y))
               , activate^#(n__true()) -> c_6(true^#())}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(n__true()) -> true()
               , activate(X) -> X
               , if(true(), X, Y) -> X}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__true()) -> c_6(true^#())}
            and weakly orienting the rules
            {  activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__true()) -> c_6(true^#())}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {true() -> n__true()}
            and weakly orienting the rules
            {  activate^#(n__true()) -> c_6(true^#())
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {true() -> n__true()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [1]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))}
            and weakly orienting the rules
            {  true() -> n__true()
             , activate^#(n__true()) -> c_6(true^#())
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [4]
                  c_0(x1) = [1] x1 + [1]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [4]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {if^#(false(), X, Y) -> c_2(activate^#(Y))}
            and weakly orienting the rules
            {  f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , true() -> n__true()
             , activate^#(n__true()) -> c_6(true^#())
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if^#(false(), X, Y) -> c_2(activate^#(Y))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [8]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [1]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {if(false(), X, Y) -> activate(Y)}
            and weakly orienting the rules
            {  if^#(false(), X, Y) -> c_2(activate^#(Y))
             , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , true() -> n__true()
             , activate^#(n__true()) -> c_6(true^#())
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if(false(), X, Y) -> activate(Y)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [8]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [0]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [8]
                  c_6(x1) = [1] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_5(f^#(activate(X)))}
            and weakly orienting the rules
            {  if(false(), X, Y) -> activate(Y)
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , true() -> n__true()
             , activate^#(n__true()) -> c_6(true^#())
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_5(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [8]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [8]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  f(X) -> if(X, c(), n__f(n__true()))
             , f(X) -> n__f(X)}
            and weakly orienting the rules
            {  activate^#(n__f(X)) -> c_5(f^#(activate(X)))
             , if(false(), X, Y) -> activate(Y)
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , true() -> n__true()
             , activate^#(n__true()) -> c_6(true^#())
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  f(X) -> if(X, c(), n__f(n__true()))
               , f(X) -> n__f(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [8]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [8]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {activate(n__f(X)) -> f(activate(X))}
              Weak Rules:
                {  f(X) -> if(X, c(), n__f(n__true()))
                 , f(X) -> n__f(X)
                 , activate^#(n__f(X)) -> c_5(f^#(activate(X)))
                 , if(false(), X, Y) -> activate(Y)
                 , if^#(false(), X, Y) -> c_2(activate^#(Y))
                 , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
                 , true() -> n__true()
                 , activate^#(n__true()) -> c_6(true^#())
                 , activate(n__true()) -> true()
                 , activate(X) -> X
                 , if(true(), X, Y) -> X}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {activate(n__f(X)) -> f(activate(X))}
                Weak Rules:
                  {  f(X) -> if(X, c(), n__f(n__true()))
                   , f(X) -> n__f(X)
                   , activate^#(n__f(X)) -> c_5(f^#(activate(X)))
                   , if(false(), X, Y) -> activate(Y)
                   , if^#(false(), X, Y) -> c_2(activate^#(Y))
                   , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
                   , true() -> n__true()
                   , activate^#(n__true()) -> c_6(true^#())
                   , activate(n__true()) -> true()
                   , activate(X) -> X
                   , if(true(), X, Y) -> X}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  f_1(6) -> 4
                 , f_1(6) -> 6
                 , f_2(15) -> 4
                 , f_2(15) -> 6
                 , if_1(6, 7, 8) -> 4
                 , if_1(6, 7, 8) -> 6
                 , if_2(6, 16, 17) -> 4
                 , if_2(6, 16, 17) -> 6
                 , if_2(15, 16, 17) -> 4
                 , if_2(15, 16, 17) -> 6
                 , c_0() -> 2
                 , c_0() -> 4
                 , c_0() -> 6
                 , c_1() -> 4
                 , c_1() -> 6
                 , c_1() -> 7
                 , c_2() -> 4
                 , c_2() -> 6
                 , c_2() -> 16
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 6
                 , n__f_1(6) -> 4
                 , n__f_1(6) -> 6
                 , n__f_1(9) -> 4
                 , n__f_1(9) -> 6
                 , n__f_1(9) -> 8
                 , n__f_2(15) -> 4
                 , n__f_2(15) -> 6
                 , n__f_2(18) -> 4
                 , n__f_2(18) -> 6
                 , n__f_2(18) -> 17
                 , n__true_0() -> 2
                 , n__true_0() -> 4
                 , n__true_0() -> 6
                 , n__true_1() -> 6
                 , n__true_1() -> 9
                 , n__true_1() -> 15
                 , n__true_2() -> 15
                 , n__true_2() -> 18
                 , true_0() -> 4
                 , true_1() -> 6
                 , true_2() -> 15
                 , false_0() -> 2
                 , false_0() -> 4
                 , false_0() -> 6
                 , activate_0(2) -> 4
                 , activate_1(2) -> 6
                 , activate_1(8) -> 4
                 , activate_1(8) -> 6
                 , activate_1(17) -> 4
                 , activate_1(17) -> 6
                 , activate_2(9) -> 15
                 , activate_2(18) -> 15
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 3
                 , f^#_1(6) -> 10
                 , f^#_2(15) -> 19
                 , c_0_0(1) -> 1
                 , c_0_0(5) -> 3
                 , c_0_1(11) -> 1
                 , c_0_1(12) -> 3
                 , c_0_1(13) -> 10
                 , c_0_2(20) -> 10
                 , c_0_2(21) -> 19
                 , if^#_0(2, 2, 2) -> 1
                 , if^#_0(4, 2, 2) -> 5
                 , if^#_1(2, 7, 8) -> 11
                 , if^#_1(4, 7, 8) -> 12
                 , if^#_1(6, 7, 8) -> 13
                 , if^#_2(6, 16, 17) -> 20
                 , if^#_2(15, 16, 17) -> 21
                 , c_2_0(1) -> 1
                 , c_2_0(1) -> 5
                 , c_2_1(14) -> 11
                 , c_2_1(14) -> 12
                 , c_2_1(14) -> 13
                 , c_2_1(22) -> 20
                 , activate^#_0(2) -> 1
                 , activate^#_1(8) -> 14
                 , activate^#_1(17) -> 22
                 , true^#_0() -> 1
                 , c_5_0(3) -> 1
                 , c_5_1(10) -> 1
                 , c_5_2(19) -> 14
                 , c_5_2(19) -> 22
                 , c_6_0(1) -> 1}
      
   3) {  f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
       , activate^#(n__f(X)) -> c_5(f^#(activate(X)))
       , if^#(false(), X, Y) -> c_2(activate^#(Y))}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__true()) -> true()
       , activate(X) -> X
       , f(X) -> if(X, c(), n__f(n__true()))
       , f(X) -> n__f(X)
       , true() -> n__true()
       , if(true(), X, Y) -> X
       , if(false(), X, Y) -> activate(Y)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__true()) -> true()
               , activate(X) -> X
               , f(X) -> if(X, c(), n__f(n__true()))
               , f(X) -> n__f(X)
               , true() -> n__true()
               , if(true(), X, Y) -> X
               , if(false(), X, Y) -> activate(Y)
               , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
               , activate^#(n__f(X)) -> c_5(f^#(activate(X)))
               , if^#(false(), X, Y) -> c_2(activate^#(Y))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(n__true()) -> true()
               , activate(X) -> X
               , if(true(), X, Y) -> X}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {true() -> n__true()}
            and weakly orienting the rules
            {  activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {true() -> n__true()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [1]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [3]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))}
            and weakly orienting the rules
            {  true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [2]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {if^#(false(), X, Y) -> c_2(activate^#(Y))}
            and weakly orienting the rules
            {  f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if^#(false(), X, Y) -> c_2(activate^#(Y))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [12]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {if(false(), X, Y) -> activate(Y)}
            and weakly orienting the rules
            {  if^#(false(), X, Y) -> c_2(activate^#(Y))
             , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if(false(), X, Y) -> activate(Y)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [8]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [15]
                  c_0(x1) = [1] x1 + [1]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [0]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate(n__f(X)) -> f(activate(X))}
            and weakly orienting the rules
            {  if(false(), X, Y) -> activate(Y)
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate(n__f(X)) -> f(activate(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [3]
                  n__true() = [0]
                  true() = [1]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [0]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [8]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_5(f^#(activate(X)))}
            and weakly orienting the rules
            {  activate(n__f(X)) -> f(activate(X))
             , if(false(), X, Y) -> activate(Y)
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_5(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [8]
                  activate(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  f(X) -> if(X, c(), n__f(n__true()))
                 , f(X) -> n__f(X)}
              Weak Rules:
                {  activate^#(n__f(X)) -> c_5(f^#(activate(X)))
                 , activate(n__f(X)) -> f(activate(X))
                 , if(false(), X, Y) -> activate(Y)
                 , if^#(false(), X, Y) -> c_2(activate^#(Y))
                 , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
                 , true() -> n__true()
                 , activate(n__true()) -> true()
                 , activate(X) -> X
                 , if(true(), X, Y) -> X}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  f(X) -> if(X, c(), n__f(n__true()))
                   , f(X) -> n__f(X)}
                Weak Rules:
                  {  activate^#(n__f(X)) -> c_5(f^#(activate(X)))
                   , activate(n__f(X)) -> f(activate(X))
                   , if(false(), X, Y) -> activate(Y)
                   , if^#(false(), X, Y) -> c_2(activate^#(Y))
                   , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
                   , true() -> n__true()
                   , activate(n__true()) -> true()
                   , activate(X) -> X
                   , if(true(), X, Y) -> X}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_0(4) -> 4
                 , f_1(10) -> 10
                 , f_1(17) -> 4
                 , f_2(22) -> 10
                 , if_1(4, 6, 7) -> 4
                 , if_2(10, 14, 15) -> 10
                 , if_2(17, 14, 15) -> 4
                 , if_3(22, 25, 26) -> 10
                 , c_0() -> 2
                 , c_0() -> 4
                 , c_0() -> 10
                 , c_1() -> 4
                 , c_1() -> 6
                 , c_2() -> 4
                 , c_2() -> 10
                 , c_2() -> 14
                 , c_3() -> 10
                 , c_3() -> 25
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 10
                 , n__f_1(4) -> 4
                 , n__f_1(8) -> 4
                 , n__f_1(8) -> 7
                 , n__f_2(10) -> 10
                 , n__f_2(16) -> 10
                 , n__f_2(16) -> 15
                 , n__f_2(17) -> 4
                 , n__f_3(22) -> 10
                 , n__f_3(27) -> 26
                 , n__true_0() -> 2
                 , n__true_0() -> 4
                 , n__true_0() -> 10
                 , n__true_1() -> 8
                 , n__true_1() -> 10
                 , n__true_1() -> 17
                 , n__true_1() -> 21
                 , n__true_2() -> 16
                 , n__true_2() -> 21
                 , n__true_2() -> 22
                 , n__true_3() -> 27
                 , true_0() -> 4
                 , true_1() -> 10
                 , true_1() -> 17
                 , true_2() -> 21
                 , true_2() -> 22
                 , false_0() -> 2
                 , false_0() -> 4
                 , false_0() -> 10
                 , activate_0(2) -> 4
                 , activate_1(2) -> 10
                 , activate_1(7) -> 4
                 , activate_1(8) -> 17
                 , activate_1(15) -> 10
                 , activate_2(8) -> 21
                 , activate_2(16) -> 22
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 3
                 , f^#_1(10) -> 9
                 , f^#_2(21) -> 20
                 , f^#_2(22) -> 28
                 , c_0_0(1) -> 1
                 , c_0_0(5) -> 3
                 , c_0_1(11) -> 1
                 , c_0_1(12) -> 3
                 , c_0_1(13) -> 9
                 , c_0_2(19) -> 9
                 , c_0_2(24) -> 20
                 , c_0_3(29) -> 20
                 , c_0_3(30) -> 28
                 , if^#_0(2, 2, 2) -> 1
                 , if^#_0(4, 2, 2) -> 5
                 , if^#_1(2, 6, 7) -> 11
                 , if^#_1(4, 6, 7) -> 12
                 , if^#_1(10, 6, 7) -> 13
                 , if^#_2(10, 14, 15) -> 19
                 , if^#_2(21, 14, 15) -> 24
                 , if^#_3(21, 25, 26) -> 29
                 , if^#_3(22, 25, 26) -> 30
                 , c_2_0(1) -> 1
                 , c_2_0(1) -> 5
                 , c_2_1(18) -> 11
                 , c_2_1(18) -> 12
                 , c_2_1(18) -> 13
                 , c_2_1(23) -> 19
                 , activate^#_0(2) -> 1
                 , activate^#_1(7) -> 18
                 , activate^#_1(15) -> 23
                 , c_5_0(3) -> 1
                 , c_5_1(9) -> 1
                 , c_5_2(20) -> 18
                 , c_5_2(28) -> 23}
      
   4) {  f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
       , activate^#(n__f(X)) -> c_5(f^#(activate(X)))
       , if^#(false(), X, Y) -> c_2(activate^#(Y))
       , activate^#(X) -> c_7()}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__true()) -> true()
       , activate(X) -> X
       , f(X) -> if(X, c(), n__f(n__true()))
       , f(X) -> n__f(X)
       , true() -> n__true()
       , if(true(), X, Y) -> X
       , if(false(), X, Y) -> activate(Y)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__true()) -> true()
               , activate(X) -> X
               , f(X) -> if(X, c(), n__f(n__true()))
               , f(X) -> n__f(X)
               , true() -> n__true()
               , if(true(), X, Y) -> X
               , if(false(), X, Y) -> activate(Y)
               , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
               , activate^#(n__f(X)) -> c_5(f^#(activate(X)))
               , if^#(false(), X, Y) -> c_2(activate^#(Y))
               , activate^#(X) -> c_7()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X
             , activate^#(X) -> c_7()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(n__true()) -> true()
               , activate(X) -> X
               , if(true(), X, Y) -> X
               , activate^#(X) -> c_7()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {true() -> n__true()}
            and weakly orienting the rules
            {  activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X
             , activate^#(X) -> c_7()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {true() -> n__true()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [1]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [3]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {if^#(false(), X, Y) -> c_2(activate^#(Y))}
            and weakly orienting the rules
            {  true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X
             , activate^#(X) -> c_7()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if^#(false(), X, Y) -> c_2(activate^#(Y))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))}
            and weakly orienting the rules
            {  if^#(false(), X, Y) -> c_2(activate^#(Y))
             , true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X
             , activate^#(X) -> c_7()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [2]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [0]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {if(false(), X, Y) -> activate(Y)}
            and weakly orienting the rules
            {  f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X
             , activate^#(X) -> c_7()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if(false(), X, Y) -> activate(Y)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [8]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [9]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate(n__f(X)) -> f(activate(X))}
            and weakly orienting the rules
            {  if(false(), X, Y) -> activate(Y)
             , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X
             , activate^#(X) -> c_7()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate(n__f(X)) -> f(activate(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [3]
                  n__true() = [0]
                  true() = [1]
                  false() = [9]
                  activate(x1) = [1] x1 + [8]
                  f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [5]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_5(f^#(activate(X)))}
            and weakly orienting the rules
            {  activate(n__f(X)) -> f(activate(X))
             , if(false(), X, Y) -> activate(Y)
             , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X
             , activate^#(X) -> c_7()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_5(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [9]
                  activate(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  f(X) -> if(X, c(), n__f(n__true()))
                 , f(X) -> n__f(X)}
              Weak Rules:
                {  activate^#(n__f(X)) -> c_5(f^#(activate(X)))
                 , activate(n__f(X)) -> f(activate(X))
                 , if(false(), X, Y) -> activate(Y)
                 , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
                 , if^#(false(), X, Y) -> c_2(activate^#(Y))
                 , true() -> n__true()
                 , activate(n__true()) -> true()
                 , activate(X) -> X
                 , if(true(), X, Y) -> X
                 , activate^#(X) -> c_7()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  f(X) -> if(X, c(), n__f(n__true()))
                   , f(X) -> n__f(X)}
                Weak Rules:
                  {  activate^#(n__f(X)) -> c_5(f^#(activate(X)))
                   , activate(n__f(X)) -> f(activate(X))
                   , if(false(), X, Y) -> activate(Y)
                   , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
                   , if^#(false(), X, Y) -> c_2(activate^#(Y))
                   , true() -> n__true()
                   , activate(n__true()) -> true()
                   , activate(X) -> X
                   , if(true(), X, Y) -> X
                   , activate^#(X) -> c_7()}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_0(4) -> 4
                 , f_1(10) -> 10
                 , f_1(20) -> 4
                 , f_2(25) -> 10
                 , if_1(4, 6, 7) -> 4
                 , if_2(10, 15, 16) -> 10
                 , if_2(20, 15, 16) -> 4
                 , if_3(25, 27, 28) -> 10
                 , c_0() -> 2
                 , c_0() -> 4
                 , c_0() -> 10
                 , c_1() -> 4
                 , c_1() -> 6
                 , c_2() -> 4
                 , c_2() -> 10
                 , c_2() -> 15
                 , c_3() -> 10
                 , c_3() -> 27
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 10
                 , n__f_1(4) -> 4
                 , n__f_1(8) -> 4
                 , n__f_1(8) -> 7
                 , n__f_2(10) -> 10
                 , n__f_2(17) -> 10
                 , n__f_2(17) -> 16
                 , n__f_2(20) -> 4
                 , n__f_3(25) -> 10
                 , n__f_3(29) -> 28
                 , n__true_0() -> 2
                 , n__true_0() -> 4
                 , n__true_0() -> 10
                 , n__true_1() -> 8
                 , n__true_1() -> 10
                 , n__true_1() -> 19
                 , n__true_1() -> 20
                 , n__true_2() -> 17
                 , n__true_2() -> 19
                 , n__true_2() -> 25
                 , n__true_3() -> 29
                 , true_0() -> 4
                 , true_1() -> 10
                 , true_1() -> 20
                 , true_2() -> 19
                 , true_2() -> 25
                 , false_0() -> 2
                 , false_0() -> 4
                 , false_0() -> 10
                 , activate_0(2) -> 4
                 , activate_1(2) -> 10
                 , activate_1(7) -> 4
                 , activate_1(8) -> 20
                 , activate_1(16) -> 10
                 , activate_2(8) -> 19
                 , activate_2(17) -> 25
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 3
                 , f^#_1(10) -> 9
                 , f^#_2(19) -> 18
                 , f^#_2(25) -> 24
                 , c_0_0(1) -> 1
                 , c_0_0(5) -> 3
                 , c_0_1(11) -> 1
                 , c_0_1(12) -> 3
                 , c_0_1(13) -> 9
                 , c_0_2(21) -> 9
                 , c_0_2(22) -> 18
                 , c_0_2(26) -> 24
                 , c_0_3(30) -> 18
                 , c_0_3(31) -> 24
                 , if^#_0(2, 2, 2) -> 1
                 , if^#_0(4, 2, 2) -> 5
                 , if^#_1(2, 6, 7) -> 11
                 , if^#_1(4, 6, 7) -> 12
                 , if^#_1(10, 6, 7) -> 13
                 , if^#_2(10, 15, 16) -> 21
                 , if^#_2(19, 15, 16) -> 22
                 , if^#_2(25, 15, 16) -> 26
                 , if^#_3(19, 27, 28) -> 30
                 , if^#_3(25, 27, 28) -> 31
                 , c_2_0(1) -> 1
                 , c_2_0(1) -> 5
                 , c_2_1(14) -> 11
                 , c_2_1(14) -> 12
                 , c_2_1(14) -> 13
                 , c_2_1(23) -> 21
                 , activate^#_0(2) -> 1
                 , activate^#_1(7) -> 14
                 , activate^#_1(16) -> 23
                 , c_5_0(3) -> 1
                 , c_5_1(9) -> 1
                 , c_5_2(18) -> 14
                 , c_5_2(24) -> 23
                 , c_7_0() -> 1
                 , c_7_1() -> 14
                 , c_7_1() -> 23}
      
   5) {  f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
       , activate^#(n__f(X)) -> c_5(f^#(activate(X)))
       , if^#(false(), X, Y) -> c_2(activate^#(Y))
       , if^#(true(), X, Y) -> c_1()}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__true()) -> true()
       , activate(X) -> X
       , f(X) -> if(X, c(), n__f(n__true()))
       , f(X) -> n__f(X)
       , true() -> n__true()
       , if(true(), X, Y) -> X
       , if(false(), X, Y) -> activate(Y)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__true()) -> true()
               , activate(X) -> X
               , f(X) -> if(X, c(), n__f(n__true()))
               , f(X) -> n__f(X)
               , true() -> n__true()
               , if(true(), X, Y) -> X
               , if(false(), X, Y) -> activate(Y)
               , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
               , activate^#(n__f(X)) -> c_5(f^#(activate(X)))
               , if^#(false(), X, Y) -> c_2(activate^#(Y))
               , if^#(true(), X, Y) -> c_1()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , if^#(true(), X, Y) -> c_1()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(n__true()) -> true()
               , activate(X) -> X
               , if(true(), X, Y) -> X
               , if^#(false(), X, Y) -> c_2(activate^#(Y))
               , if^#(true(), X, Y) -> c_1()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {true() -> n__true()}
            and weakly orienting the rules
            {  activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , if^#(true(), X, Y) -> c_1()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {true() -> n__true()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [1]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [0]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))}
            and weakly orienting the rules
            {  true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , if^#(true(), X, Y) -> c_1()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [0]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {if(false(), X, Y) -> activate(Y)}
            and weakly orienting the rules
            {  f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , if^#(true(), X, Y) -> c_1()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if(false(), X, Y) -> activate(Y)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [8]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [1]
                  activate^#(x1) = [1] x1 + [0]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  f(X) -> if(X, c(), n__f(n__true()))
             , f(X) -> n__f(X)}
            and weakly orienting the rules
            {  if(false(), X, Y) -> activate(Y)
             , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , if^#(true(), X, Y) -> c_1()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  f(X) -> if(X, c(), n__f(n__true()))
               , f(X) -> n__f(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [9]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c() = [0]
                  n__f(x1) = [1] x1 + [6]
                  n__true() = [0]
                  true() = [1]
                  false() = [8]
                  activate(x1) = [1] x1 + [8]
                  f^#(x1) = [1] x1 + [7]
                  c_0(x1) = [1] x1 + [1]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [8]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_5(f^#(activate(X)))}
            and weakly orienting the rules
            {  f(X) -> if(X, c(), n__f(n__true()))
             , f(X) -> n__f(X)
             , if(false(), X, Y) -> activate(Y)
             , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , true() -> n__true()
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , if^#(true(), X, Y) -> c_1()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_5(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [8]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [8]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [3]
                  activate^#(x1) = [1] x1 + [2]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {activate(n__f(X)) -> f(activate(X))}
              Weak Rules:
                {  activate^#(n__f(X)) -> c_5(f^#(activate(X)))
                 , f(X) -> if(X, c(), n__f(n__true()))
                 , f(X) -> n__f(X)
                 , if(false(), X, Y) -> activate(Y)
                 , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
                 , true() -> n__true()
                 , activate(n__true()) -> true()
                 , activate(X) -> X
                 , if(true(), X, Y) -> X
                 , if^#(false(), X, Y) -> c_2(activate^#(Y))
                 , if^#(true(), X, Y) -> c_1()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {activate(n__f(X)) -> f(activate(X))}
                Weak Rules:
                  {  activate^#(n__f(X)) -> c_5(f^#(activate(X)))
                   , f(X) -> if(X, c(), n__f(n__true()))
                   , f(X) -> n__f(X)
                   , if(false(), X, Y) -> activate(Y)
                   , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
                   , true() -> n__true()
                   , activate(n__true()) -> true()
                   , activate(X) -> X
                   , if(true(), X, Y) -> X
                   , if^#(false(), X, Y) -> c_2(activate^#(Y))
                   , if^#(true(), X, Y) -> c_1()}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  f_1(6) -> 4
                 , f_1(6) -> 6
                 , f_2(18) -> 4
                 , f_2(18) -> 6
                 , if_1(6, 8, 9) -> 4
                 , if_1(6, 8, 9) -> 6
                 , if_2(6, 20, 21) -> 4
                 , if_2(6, 20, 21) -> 6
                 , if_2(18, 20, 21) -> 4
                 , if_2(18, 20, 21) -> 6
                 , c_0() -> 2
                 , c_0() -> 4
                 , c_0() -> 6
                 , c_1() -> 4
                 , c_1() -> 6
                 , c_1() -> 8
                 , c_2() -> 4
                 , c_2() -> 6
                 , c_2() -> 20
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 6
                 , n__f_1(6) -> 4
                 , n__f_1(6) -> 6
                 , n__f_1(10) -> 4
                 , n__f_1(10) -> 6
                 , n__f_1(10) -> 9
                 , n__f_2(18) -> 4
                 , n__f_2(18) -> 6
                 , n__f_2(22) -> 4
                 , n__f_2(22) -> 6
                 , n__f_2(22) -> 21
                 , n__true_0() -> 2
                 , n__true_0() -> 4
                 , n__true_0() -> 6
                 , n__true_1() -> 6
                 , n__true_1() -> 10
                 , n__true_1() -> 16
                 , n__true_1() -> 18
                 , n__true_2() -> 18
                 , n__true_2() -> 22
                 , true_0() -> 4
                 , true_1() -> 6
                 , true_1() -> 16
                 , true_2() -> 18
                 , false_0() -> 2
                 , false_0() -> 4
                 , false_0() -> 6
                 , activate_0(2) -> 4
                 , activate_1(2) -> 6
                 , activate_1(9) -> 4
                 , activate_1(9) -> 6
                 , activate_1(10) -> 16
                 , activate_1(21) -> 4
                 , activate_1(21) -> 6
                 , activate_2(10) -> 18
                 , activate_2(22) -> 18
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 3
                 , f^#_1(6) -> 7
                 , f^#_1(16) -> 15
                 , f^#_2(18) -> 19
                 , c_0_0(1) -> 1
                 , c_0_0(5) -> 3
                 , c_0_1(11) -> 1
                 , c_0_1(12) -> 3
                 , c_0_1(13) -> 7
                 , c_0_1(17) -> 15
                 , c_0_2(23) -> 7
                 , c_0_2(24) -> 15
                 , c_0_2(25) -> 19
                 , if^#_0(2, 2, 2) -> 1
                 , if^#_0(4, 2, 2) -> 5
                 , if^#_1(2, 8, 9) -> 11
                 , if^#_1(4, 8, 9) -> 12
                 , if^#_1(6, 8, 9) -> 13
                 , if^#_1(16, 8, 9) -> 17
                 , if^#_2(6, 20, 21) -> 23
                 , if^#_2(16, 20, 21) -> 24
                 , if^#_2(18, 20, 21) -> 25
                 , c_1_0() -> 5
                 , c_1_1() -> 12
                 , c_1_1() -> 13
                 , c_1_1() -> 17
                 , c_1_2() -> 23
                 , c_1_2() -> 24
                 , c_1_2() -> 25
                 , c_2_0(1) -> 1
                 , c_2_0(1) -> 5
                 , c_2_1(14) -> 11
                 , c_2_1(14) -> 12
                 , c_2_1(14) -> 13
                 , c_2_1(26) -> 23
                 , activate^#_0(2) -> 1
                 , activate^#_1(9) -> 14
                 , activate^#_1(21) -> 26
                 , c_5_0(3) -> 1
                 , c_5_1(7) -> 1
                 , c_5_1(15) -> 14
                 , c_5_2(19) -> 14
                 , c_5_2(19) -> 26}
      
   6) {  f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
       , activate^#(n__f(X)) -> c_5(f^#(activate(X)))
       , if^#(false(), X, Y) -> c_2(activate^#(Y))
       , f^#(X) -> c_3()}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__true()) -> true()
       , activate(X) -> X
       , f(X) -> if(X, c(), n__f(n__true()))
       , f(X) -> n__f(X)
       , true() -> n__true()
       , if(true(), X, Y) -> X
       , if(false(), X, Y) -> activate(Y)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__true()) -> true()
               , activate(X) -> X
               , f(X) -> if(X, c(), n__f(n__true()))
               , f(X) -> n__f(X)
               , true() -> n__true()
               , if(true(), X, Y) -> X
               , if(false(), X, Y) -> activate(Y)
               , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
               , activate^#(n__f(X)) -> c_5(f^#(activate(X)))
               , if^#(false(), X, Y) -> c_2(activate^#(Y))
               , f^#(X) -> c_3()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(n__true()) -> true()
               , activate(X) -> X
               , if(true(), X, Y) -> X}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  true() -> n__true()
             , if^#(false(), X, Y) -> c_2(activate^#(Y))}
            and weakly orienting the rules
            {  activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  true() -> n__true()
               , if^#(false(), X, Y) -> c_2(activate^#(Y))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [1]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , f^#(X) -> c_3()}
            and weakly orienting the rules
            {  true() -> n__true()
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
               , f^#(X) -> c_3()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [0]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {if(false(), X, Y) -> activate(Y)}
            and weakly orienting the rules
            {  f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , f^#(X) -> c_3()
             , true() -> n__true()
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {if(false(), X, Y) -> activate(Y)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [8]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [9]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate(n__f(X)) -> f(activate(X))}
            and weakly orienting the rules
            {  if(false(), X, Y) -> activate(Y)
             , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , f^#(X) -> c_3()
             , true() -> n__true()
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate(n__f(X)) -> f(activate(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [1]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [3]
                  c() = [0]
                  n__f(x1) = [1] x1 + [3]
                  n__true() = [0]
                  true() = [1]
                  false() = [10]
                  activate(x1) = [1] x1 + [8]
                  f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [0]
                  activate^#(x1) = [1] x1 + [5]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_5(f^#(activate(X)))}
            and weakly orienting the rules
            {  activate(n__f(X)) -> f(activate(X))
             , if(false(), X, Y) -> activate(Y)
             , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
             , f^#(X) -> c_3()
             , true() -> n__true()
             , if^#(false(), X, Y) -> c_2(activate^#(Y))
             , activate(n__true()) -> true()
             , activate(X) -> X
             , if(true(), X, Y) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_5(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  if(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
                  c() = [0]
                  n__f(x1) = [1] x1 + [0]
                  n__true() = [0]
                  true() = [0]
                  false() = [9]
                  activate(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  if^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                  c_1() = [0]
                  c_2(x1) = [1] x1 + [2]
                  activate^#(x1) = [1] x1 + [1]
                  c_3() = [0]
                  true^#() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  f(X) -> if(X, c(), n__f(n__true()))
                 , f(X) -> n__f(X)}
              Weak Rules:
                {  activate^#(n__f(X)) -> c_5(f^#(activate(X)))
                 , activate(n__f(X)) -> f(activate(X))
                 , if(false(), X, Y) -> activate(Y)
                 , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
                 , f^#(X) -> c_3()
                 , true() -> n__true()
                 , if^#(false(), X, Y) -> c_2(activate^#(Y))
                 , activate(n__true()) -> true()
                 , activate(X) -> X
                 , if(true(), X, Y) -> X}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  f(X) -> if(X, c(), n__f(n__true()))
                   , f(X) -> n__f(X)}
                Weak Rules:
                  {  activate^#(n__f(X)) -> c_5(f^#(activate(X)))
                   , activate(n__f(X)) -> f(activate(X))
                   , if(false(), X, Y) -> activate(Y)
                   , f^#(X) -> c_0(if^#(X, c(), n__f(n__true())))
                   , f^#(X) -> c_3()
                   , true() -> n__true()
                   , if^#(false(), X, Y) -> c_2(activate^#(Y))
                   , activate(n__true()) -> true()
                   , activate(X) -> X
                   , if(true(), X, Y) -> X}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_0(4) -> 4
                 , f_1(10) -> 10
                 , f_1(20) -> 4
                 , f_2(25) -> 10
                 , if_1(4, 6, 7) -> 4
                 , if_2(10, 15, 16) -> 10
                 , if_2(20, 15, 16) -> 4
                 , if_3(25, 27, 28) -> 10
                 , c_0() -> 2
                 , c_0() -> 4
                 , c_0() -> 10
                 , c_1() -> 4
                 , c_1() -> 6
                 , c_2() -> 4
                 , c_2() -> 10
                 , c_2() -> 15
                 , c_3() -> 10
                 , c_3() -> 27
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 10
                 , n__f_1(4) -> 4
                 , n__f_1(8) -> 4
                 , n__f_1(8) -> 7
                 , n__f_2(10) -> 10
                 , n__f_2(17) -> 10
                 , n__f_2(17) -> 16
                 , n__f_2(20) -> 4
                 , n__f_3(25) -> 10
                 , n__f_3(29) -> 28
                 , n__true_0() -> 2
                 , n__true_0() -> 4
                 , n__true_0() -> 10
                 , n__true_1() -> 8
                 , n__true_1() -> 10
                 , n__true_1() -> 19
                 , n__true_1() -> 20
                 , n__true_2() -> 17
                 , n__true_2() -> 19
                 , n__true_2() -> 25
                 , n__true_3() -> 29
                 , true_0() -> 4
                 , true_1() -> 10
                 , true_1() -> 20
                 , true_2() -> 19
                 , true_2() -> 25
                 , false_0() -> 2
                 , false_0() -> 4
                 , false_0() -> 10
                 , activate_0(2) -> 4
                 , activate_1(2) -> 10
                 , activate_1(7) -> 4
                 , activate_1(8) -> 20
                 , activate_1(16) -> 10
                 , activate_2(8) -> 19
                 , activate_2(17) -> 25
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 3
                 , f^#_1(10) -> 9
                 , f^#_2(19) -> 18
                 , f^#_2(25) -> 24
                 , c_0_0(1) -> 1
                 , c_0_0(5) -> 3
                 , c_0_1(11) -> 1
                 , c_0_1(12) -> 3
                 , c_0_1(13) -> 9
                 , c_0_2(21) -> 9
                 , c_0_2(22) -> 18
                 , c_0_2(26) -> 24
                 , c_0_3(30) -> 18
                 , c_0_3(31) -> 24
                 , if^#_0(2, 2, 2) -> 1
                 , if^#_0(4, 2, 2) -> 5
                 , if^#_1(2, 6, 7) -> 11
                 , if^#_1(4, 6, 7) -> 12
                 , if^#_1(10, 6, 7) -> 13
                 , if^#_2(10, 15, 16) -> 21
                 , if^#_2(19, 15, 16) -> 22
                 , if^#_2(25, 15, 16) -> 26
                 , if^#_3(19, 27, 28) -> 30
                 , if^#_3(25, 27, 28) -> 31
                 , c_2_0(1) -> 1
                 , c_2_0(1) -> 5
                 , c_2_1(14) -> 11
                 , c_2_1(14) -> 12
                 , c_2_1(14) -> 13
                 , c_2_1(23) -> 21
                 , activate^#_0(2) -> 1
                 , activate^#_1(7) -> 14
                 , activate^#_1(16) -> 23
                 , c_3_0() -> 1
                 , c_3_0() -> 3
                 , c_3_1() -> 9
                 , c_3_2() -> 18
                 , c_3_2() -> 24
                 , c_5_0(3) -> 1
                 , c_5_1(9) -> 1
                 , c_5_2(18) -> 14
                 , c_5_2(24) -> 23}